

RETAIN FOR FUTURE USE

U35100 - 1 of 11

General Instructions

This manual provides general operating instructions for the "Fast Acting Brake Rectifiers type "GPE, GPU, and PMG" that are commonly offered by NORD in addition to the standard brake control rectifiers. Please feel free to contact NORD with any questions concerning the supplied brake rectifiers and brake components.

Safety Notice

Only qualified personnel should attempt installation, operation and maintenance of NORD brakes and brake rectifiers. If you have a question about a procedure or are uncertain about any detail, seek clarification and DO NOT PROCEED.

DANGER

- This equipment contains high electrical voltage.
 Remove and lockout all power from the electric motor and brake before any work is completed on the brake.
- The user is responsible for conforming to all national and local electrical and safety codes. Wiring practices, proper grounding, disconnects, and over current protection, are of particular importance.
- Make certain the load is supported when servicing the brake. Removing power from the brake or removing the brake from the motor will release the load, which may cause severe injury or death.
- Failure to follow proper procedures and precautions may result in severe bodily injury or death.

Brake Control Rectifiers

NORD brake control rectifiers convert AC voltage to DC voltage. Rectifiers are used because most applications require-AC voltage to power the motor, but DC power is required to power the brake and DC power is not typically available. NORD brakemotors typically include the rectifier located inside the terminal box.

Rectifier Advantages

- Individual power source for each brake.
- Compact size, mounted inside the terminal box.
- Multiple types, voltage options and release/engagement modes available.
- Mountable in a separate control cabinet.
- Integral protection against voltage spikes.

NORD Gear Limited

Toll Free in Canada: 800.668.4378

Standard Rectifier Types

Full-Wave Rectifier

A rectifier in which both the positive and negative half-cycles of the AC input signal are rectified to produce a uni-directional DC current supply to the load or the brake. The output voltage is 90% of the input voltage ($V_{DC} = 0.90 \times V_{AC}$).

Half-Wave Rectifier

A rectifier in which only alternate half-cycles of the AC input signal are rectified to produce a uni-directional DC current supply to the load or the brake. The output voltage is 45% of the input voltage ($V_{DC} = 0.45 \times V_{AC}$).

Dual-Wave Rectifier

A rectifier that can be wired as either a full-wave rectifier or a half-wave rectifier depending upon how it is connected to the AC input signal.

IMPORTANT NOTE

This manual provides general operating instructions for NORD brakes with Fast-Acting brake Rectifiers. For additional brake and brake rectifier information please reference User Manual U35000.

Fast-Acting or Push-Hybrid Rectifiers [GPE, GPU & PMG]

A push-hybrid rectifier or fast-acting brake rectifier provides an initial "push" in the form of a timed full-wave brake-release function, which is then followed by a continuous halfwave brake-holding function. There are two ways to apply these rectifiers as follows:

- "Overexcitation" of the brake coil provides faster brake release or improved cycling capacity. The DC voltage of the brake coil is determined based upon using a half-wave rectifier. The output voltage is 45% of the input voltage (V_{DC} = 0.45 x V_{AC}).
- "Reducer-Power Holding" of the brake coil maintains the brake in a released state by using only 25% of the power needed for the initial brake release. This results in very fast brake stopping. The DC voltage of the brake coil is determined based upon using a full-wave rectifier. The output voltage is 90% of the input voltage. (V_{DC} = 0.90 x V_{AC}).

NOTICE

In order to prevent rapid wear, the PMG 500 rectifier is required when utilizing the larger 800 Nm (590 lb-ft) and 1200 Nm (885 lb-ft) twin-rotor brakes. The PMG500 rectifier is wired to "overexcite" the brake during its initial release.

NORD Gear Corporation

Toll Free in the United States: 888.314.6673

- RETAIN FOR FUTURE USE

U35100 - 2 of 11

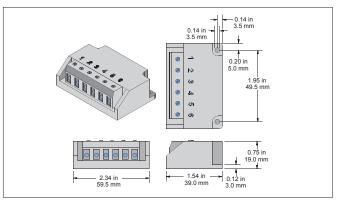
Push-Hybrid Rectifiers External DC Switching (GPE)

Like the standard NORD brake control rectifiers, NORD's fast acting brake control rectifiers convert AC voltage to DC voltage. The "Fast Acting Brake Rectifiers" are utilized to improve brake performance and are often recommended in order to provide shorter brake release times or to provide faster stopping times.

The fast acting rectifiers are a two-stage "push" design. When power is first applied these rectifiers operate like a full-wave rectifier and then after a relatively short period of time they act like a half-wave rectifier. The GPE type rectifiers start out in full-wave mode when power is first applied and then after approximately 250 ms they switch to half-wave mode.

GPE rectifiers were designed for external control of the brake's DC-switching. GPE rectifiers are primarily used in across-the-line applications where the brake power is supplied by the motor terminals but they may also be used in situations where the brake power is supplied separately to the brake rectifier.

There are two ways to apply the fast acting rectifiers:

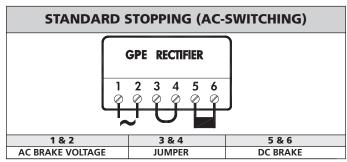

- The first method, known as "Overexcitation," provides fast brake release. The brake coil is selected like a halfwave system (45% of the AC supply voltage).
- The second method, known as "Reduced Power Holding," provides very fast brake stopping. The brake coil is selected like a full-wave system (90% of the AC supply voltage).

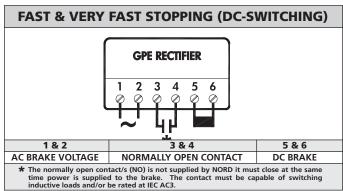
IMPORTANT NOTE

If the motor is connected to a frequency inverter, soft start, or is a two-speed motor, then seperate AC power must be supplied to the brake rectifier.

GPE Rectifier Dimensions

Ratings & Part Numbers


Model Type	GPE20L GPE40L				
Part Number	19140230	19140240			
Protection (electronics)	Coated	Coated			
Color	Bla	ack			
Input Voltage (V _{AC})	200V-275V	380V-480V			
Output Voltage (V _{DC})	$(V_{DC}=0.45 \times V_{AC})$ - As Half-Wave $(V_{DC}=0.90 \times V_{AC})$ - As Full-Wave				
Rated Current @ 40°C	0.7 A 0.7A				
Rated Current @ 75°C	0.5 A 0.5A				
Temperature Range	-20°C to 75°C				
DC-Switching via	External Contact or IR Relay				


Braking Method

Braking Method	Break Release Brake Engage (Start) (Stop)		Power Source
40	Standard Very Fast (Reduced Power Holding)		Motor terminals
30	Fast Standard (Overecitation) (AC Switching)		Motor terminals
35	Fast (Overecitation)	Fast (DC Switching)	Motor terminals

Basic Connection (AC & DC Switching)

The GPE brake system can be connected for standard stopping (AC-Switching), fast stopping (DC-Switching) and very fast stopping (Reduced power holding & DC-Switching). Fast brake release can also be achieved by selecting a different brake coil combination.

NORD Gear LimitedToll Free in Canada: 800.668.4378

NORD Gear CorporationToll Free in the United States: 888.314.6673

RETAIN FOR FUTURE USE

U35100 - 3 of 11

Push-Hybrid Rectifiers Integrated DC Switching (GPU)

Like the standard NORD brake control rectifiers, NORD's fast acting brake control rectifiers convert AC voltage to DC voltage. The "Fast Acting Brake Rectifiers" are utilized to improve brake performance and are often recommended in order to provide shorter brake release times or to provide faster stopping times.

The fast acting rectifiers are a two-stage "push" design. When power is first applied these rectifiers operate like a full-wave rectifier and then after a relatively short period of time they act like a half-wave rectifier. The GPU rectifiers start out in full-wave mode when power is first applied and then after approximately 250 ms they switch to half-wave mode.

GPU rectifiers were designed for integrated control of the brake's DC-switching and are voltage sensing. GPU rectifiers are primarily used in applications where there is a frequency inverter, soft start, or two-speed motor. Seperate AC power must be supplied to the brake rectifier.

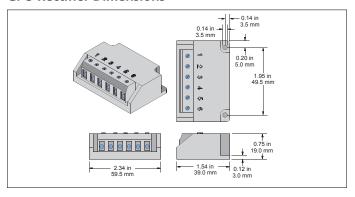
There are two ways to apply the fast acting rectifiers:

- The first method, known as "Overexcitation," provides fast brake release. The brake coil is selected like a halfwave system (45% of the AC supply voltage).
- The second method, known as "Reduced Power Holding," provides very fast brake stopping. The brake coil is selected like a full-wave system (90% of the AC supply voltage).

1

IMPORTANT NOTE

The GPU rectifier may also be utilized for across-the-line applications; however it must always be powered separate from the motor and have its own pair of contactors or starters. It is unadvisable to use the motor terminal block to supply the GPU rectifier's AC power due to the motor's slow energy dissipation when switched off.

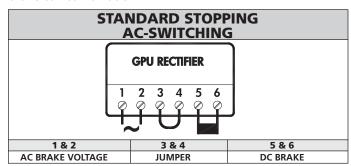

IMPORTANT NOTE

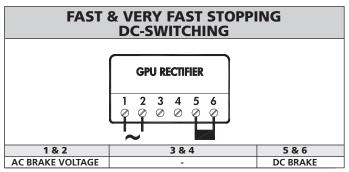
If the motor is connected to a frequency inverter, soft start, or is a two-speed motor, then seperate AC power must be supplied to the brake rectifier.

Braking Method

Braking Method	Break Release Brake Engage (Start) (Stop)		Power Source
55	Standard Very Fast (Reduced Power Holding)		Seperate power
45	Fast Standard (Overecitation) (AC Switching)		Seperate power
50	Fast Fast (Overecitation) (DC Switching)		Seperate power

GPU Rectifier Dimensions




Ratings & Part Numbers

Model Type	GPU20L GPU40L				
Part Number	19140090	19140170			
Protection (electronics)	Coated	Coated			
Color	Bla	nck			
Input Voltage (V _{AC})	200V-275V 380V-480V				
Output Voltage (V _{DC})	$(V_{DC}=0.45 \times V_{AC})$ - As Half-Wave $(V_{DC}=0.90 \times V_{AC})$ - As Full-Wave				
Rated Current @ 40°C	0.7A	0.7A			
Rated Current @ 75°C	0.5A	0.5A			
Temperature Range	-20°C to 75°C				
DC-Switching via	Internal Activation				

Basic Connection (AC & DC Switching)

The GPU brake system can be connected for standard stopping (AC-Switching), fast stopping (DC-Switching) and very fast stopping (Reduced power holding & DC-Switching). Fast brake release can also be achieved by selecting a different brake coil combination.

NORD Gear Limited

Toll Free in Canada: 800.668.4378

NORD Gear CorporationToll Free in the United States: 888.314.6673

RETAIN FOR FUTURE USE

U35100 - 4 of 11

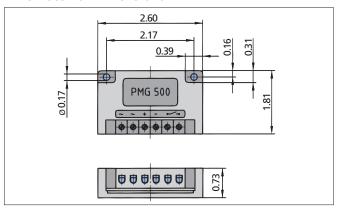
Push-Hybrid Rectifiers External DC Switching (PMG)

Like the standard NORD brake control rectifiers, NORD's fast acting brake control rectifiers convert AC voltage to DC voltage. The "Fast Acting Brake Rectifiers" are utilized to improve brake performance and are often recommended in order to provide shorter brake release times or to provide faster stopping times.

The fast acting rectifiers are a two-stage "push" design. When power is first applied these rectifiers operate like a full-wave rectifier and then after a relatively short period of time they act like a half-wave rectifier. The PMG type rectifiers start out in full-wave mode when power is first applied and then after approximately 250 ms they switch to half-wave mode.

PMG rectifiers were designed for external control of the brake's DC-switching. PMG rectifiers are primarily used in across-the-line applications where the brake power is supplied by the motor terminals, but they may also be used in situations where the brake power is supplied separately from the brake rectifier.

There are two ways to apply the fast acting rectifiers:


- The first method, known as "Overexcitation," provides fast brake release. The brake coil is selected like a half-wave system (45% of the AC supply voltage).
- The second method, known as "Reduced Power Holding," provides very fast brake stopping. The brake coil is selected like a full-wave system (90% of the AC supply voltage).

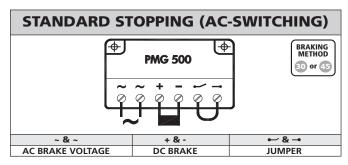
i

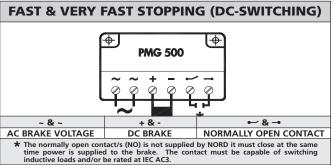
IMPORTANT NOTE

If the motor is connected to a frequency inverter, soft start, or is a two-speed motor, then seperate AC power must be supplied to the brake rectifier.

PMG Rectifier Dimensions

Ratings & Part Numbers


Model Type	PMG 500			
Part Number	19140200			
Protection (electronics)	Coated			
Color	Black			
Input Voltage (V _{AC})	200-500VAC */ - 10%			
Output Voltage (V _{DC})	$(V_{DC}$ =0.45 x V_{AC}) - As Half-Wave $(V_{DC}$ =0.90 x V_{AC}) - As Full-Wave			
Rated Current @ 40°C	4.0 A			
Rated Current @ 75°C	2.8 A			
Temperature Range	-15°C to 80°C			
DC-Switching via	External Contact			


Braking Method

Braking Method	Break Release (Start)	Power Source	
40	Standard	Very Fast (Reduced Power Holding)	Motor terminals
30	Fast Standard (Overecitation) (AC Switching)		Motor terminals
35	Fast Fast (Overecitation) (DC Switching)		Motor terminals
55	Standard Very Fast (Reduced Power Holding)		Seperate power
45	Fast Standard (Overecitation) (AC Switching)		Seperate power
50	Fast Fast (Overecitation) (DC Switching)		Seperate power

Basic Connection (AC & DC Switching)

The PMG brake system can be connected for standard stopping (AC-Switching), fast stopping (DC-Switching) and very fast stopping (Reduced power holding & DC-Switching). Fast brake release can also be achieved by selecting a different brake coil combination.

NORD Gear Limited

Toll Free in Canada: 800.668.4378

NORD Gear CorporationToll Free in the United States: 888.314.6673

RETAIN FOR FUTURE USE

Brake Times & Electrical Selection

Brake timing performance is critical in selecting the optimal brake system. NORD brakes can provide exceptional performance in terms of the release (start) times and engagement (stop) times. Use the following guidelines in order to select the correct brake control components and connections.

- Determine if the brake needs to be wired directly from the motor terminal block or powered by a separate source.
- If you are using a frequency inverter, soft-start or a two speed motor you will need to supply the rectifier from a separate power source.
- If the motor is powered direct across-the-line the rectifier power can be supplied from the motor's terminal block.
- 2) What type of performance do I need?
- Is the standard brake performance OK?
- Is a higher performance required for fast brake release or very fast brake stopping?
- 3) Determine the brake supply voltage and check the rectifier compatability using the table on the page 6.

Selection Suggestions

When Fast or Very Fast Stopping is Recommended

Any applications that require quick stops and positive action at stand-still

Recommended Applications

- · conveyors and inclined conveyors
- hoists and lifts
- bulk material handling equipment (bucket elevators, idler conveyor's).

\triangle

WARNING

Hoisting (lifting/lowering) applications - must have the brake wired for fast response (DC-switching) Hoisting (lifting/lowering) applications must have the brake wired for fast response to protect against injury or damage to the equipment.

When Fast-Release is Recommended (Overexcitation)

Any application that is very high-cycling with frequent starts and stops. These applications require the brake to release very-quickly in order to avoid excessive heat build-up in the AC motor and brake coil.

Recommended Applications

- Index conveyors
- Diverters

Power Source	Brake Release (start)	Brake engagement (stop)	Braking Method *	Rectifier	
	Standard	Very Fast (Reduced power holding)	40	GPE or PMG 500	
Motor Terminal Block	Fast (Overexcitation)	Standard (AC switching)	30	GPE or PMG 500	
	Fast (Overexcitation)	Fast (DC switching)	35	GPE or PMG 500	
	Standard	Very Fast (Reduced power holding)	55	GPU or PMG 500	
Seperate Power Source	Fast (Overexcitation)	Standard (AC switching)	45	GPU or PMG 500	
	Fast (Overexcitation)	Fast (DC switching)	50	GPU or PMG 500	

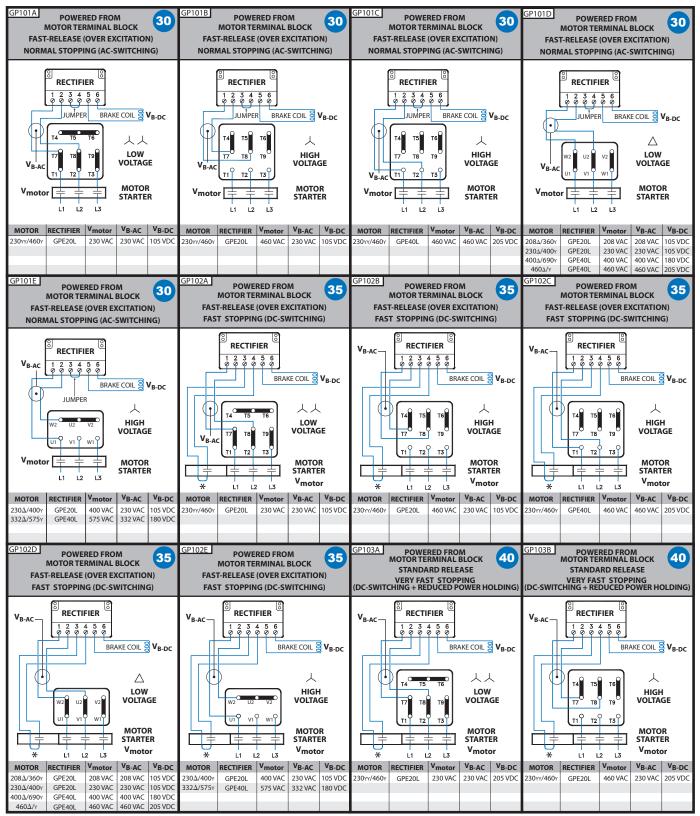
^{*} Braking methods referenced in connection diagrams on pages 7-11.

Toll Free in Canada: 800.668.4378

- RETAIN FOR FUTURE USE -

- U35100 - 6 of 11

Rectifier Supply Voltage	Brake Coil Voltage	Braking Method	Rectifier Type	Rectifier P/N	5	10	20	40	09	BRE 100	150	250	BRE 400	800	1200
(VAC)	(VDC)				BRE	BRE	BRE 20	BRE 40	BRE 60	BRE	BRE	BRE	BRE	BRE	BRE
	105	30	GPE20L	19140230	Х	Х	Х	Х							
	105	30	PMG500	19140200					Χ	Х	Х	Х	Х	Х	Х
	105	35	GPE20L	19140230	Х	Х	Х	Х							
	105	35	PMG500	19140200					Χ	Х	Х	Х	Х	Х	Х
	180	40	GPE20L	19140230	Х	Х	Х	Х	Χ	Х	Х				
208	180	40	PMG500	19140200								Х	Х	Х	Х
(200-208)	105	45	GPU20L	19140090	Х	Х	Х	Х							
	105	45	PMG500	19140200					Χ	Х	Х	Х	Х	Х	Х
	105	50	GPU20L	19140090	Х	Х	Х	Х							
	105	50	PMG500	19140200					Χ	Х	Х	Х	Х	Х	Х
	180	55	GPU20L	19140090	Х	Х	Х	Х	Χ	Х	Х				
	180	55	PMG500	19140200								Х	Х	Х	Х
	105	30	GPE20L	19140230	Х	Х	Х	Х							
	105	30	PMG500	19140200					Χ	Х	Х	Х	Х	Х	Х
	105	35	GPE20L	19140230	Х	Х	Х	Х	Χ	Х	Х				
	105	35	PMG500	19140200								Х	Х	Х	Х
	205	40	GPE20L	19140230	Х	Х	Х	Х	Χ	Х	Х				
230	205	40	PMG500	19140200								Х	Х	Х	Х
(220-240)	105	45	GPU20L	19140090	Х	Х	Х	Х							
	105	45	PMG500	19140200					Χ	Х	Х	Х	Х	Х	Х
	105	50	GPU20L	19140090	Х	Х	Х	Х							
	105	50	PMG500	19140200					Χ	Х	Х	Х	Х	Х	Х
	205	55	GPU20L	19140090	Х	Х	Х	Х	Χ	Х	Х				
	205	55	PMG500	19140200								Х	Χ	Х	Х
	180	30	GPE40L	19140240	Х	Х	Х	Х	Χ	Х	Х				
	180	30	PMG500	19140200								Х	Х	Х	Х
222	180	35	GPE40L	19140240	Х	Х	Х	Х	Χ	Х	Х				
332	180	35	PMG500	19140200								Х	Х	Х	Х
	180	45	GPU40L	19140170	Х	Х	Х	Х	Χ	Х	Х				
	180	50	GPU40L	19140170	Х	Х	Х	Х	Χ	Χ	Х				
	180	30	GPE40L	19140240	Х	Х	Х	Х	Χ	Χ	Х				
	180	30	PMG500	19140200								Х	Χ	Х	X
	180	35	GPE40L	19140240	Х	Х	Х	Х	Χ	Χ	Х				
400	180	35	PMG500	19140200								Х	Х	Х	X
(380-415)	180	45	GPU20L	19140090	Х	Х	Х	Х	Χ	Χ	Х				
	180	45	PMG500	19140200								Х	Х	Х	X
	180	50	GPU20L	19140090	Х	Х	Х	Х	Χ	Χ	Х				
	180	50	PMG500	19140200								Х	Χ	Х	Х
	205	30	GPE40L	19140240	Х	Х	Х	Х	Χ	Х	Х				
	205	30	PMG500	19140200								Х	Х	Х	Х
	205	35	GPE40L	19140240	Х	Х	Х	Х	Χ	Х	Х				
460	205	35	PMG500	19140200								Х	Х	Х	Х
(440-480)	205	45	GPU40L	19140170	Х	Х	Х	Х	Χ	Х	Х				
	205	45	PMG500	19140200								Х	Х	Х	Х
	205	50	GPU40L	19140170	Х	Х	Х	Х	Х	Х	Х				
	205	50	PMG500	19140200								Х	Х	Х	Х


Toll Free in Canada: 800.668.4378

- RETAIN FOR FUTURE USE

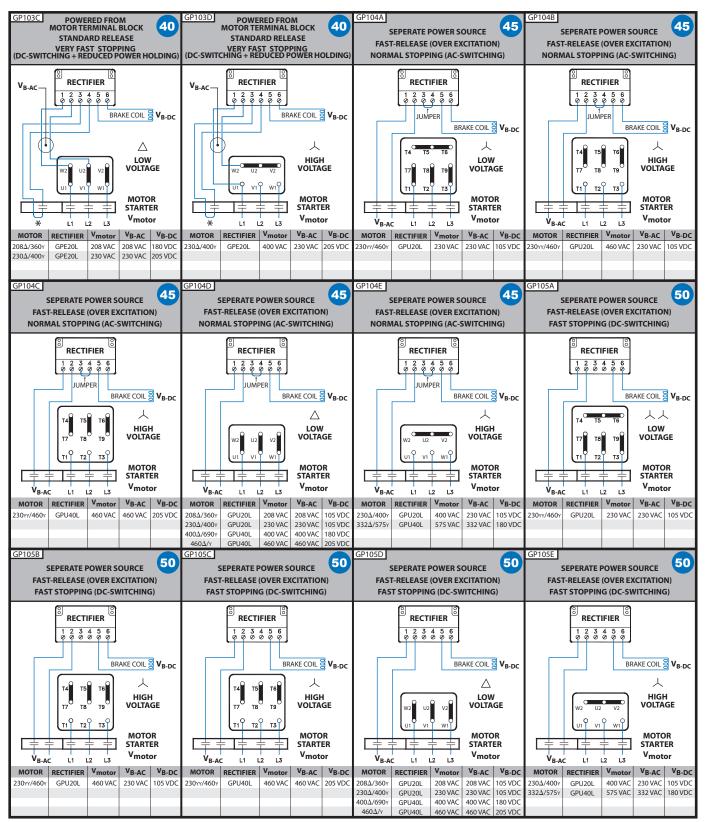
· U35100 - 7 of 11

* The normally open contact/s (NO) is not supplied by NORD. It must close at the same time power is supplied to the brake. The contact must be capable of switching inductive loads and/or be rated IEC AC3.

NORD Gear Limited

NORD Gear Corporation

Toll Free in Canada: 800.668.4378


Toll Free in the United States: 888.314.6673

- RETAIN FOR FUTURE USE

- U35100 - 8 of 11

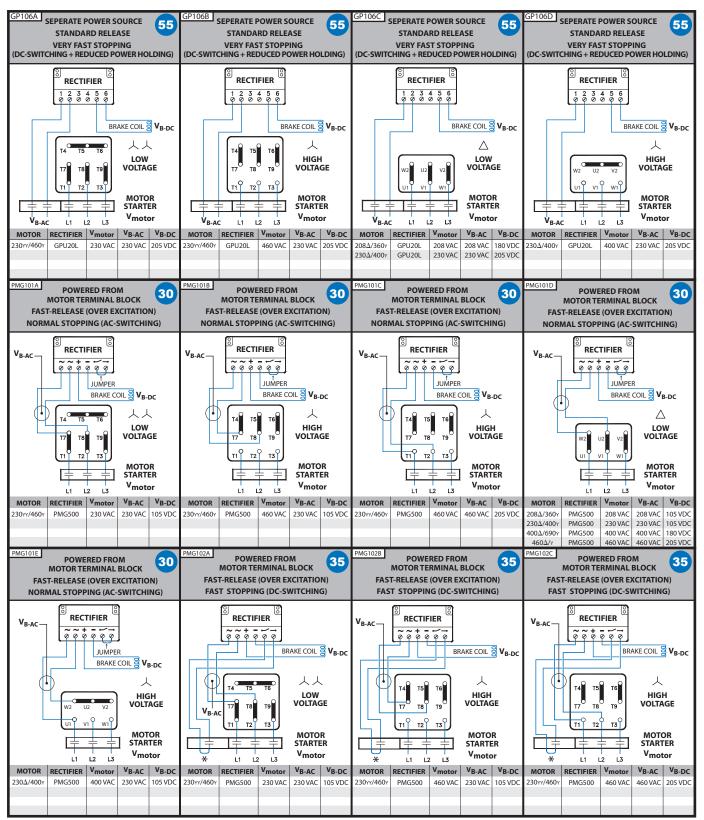
* The normally open contact/s (NO) is not supplied by NORD. It must close at the same time power is supplied to the brake. The contact must be capable of switching inductive loads and/or be rated IEC AC3.

NORD Gear Limited

NORD Gear Corporation

www.nord.com/docs

Toll Free in Canada: 800.668.4378


Toll Free in the United States: 888.314.6673

— RETAIN FOR FUTURE USE

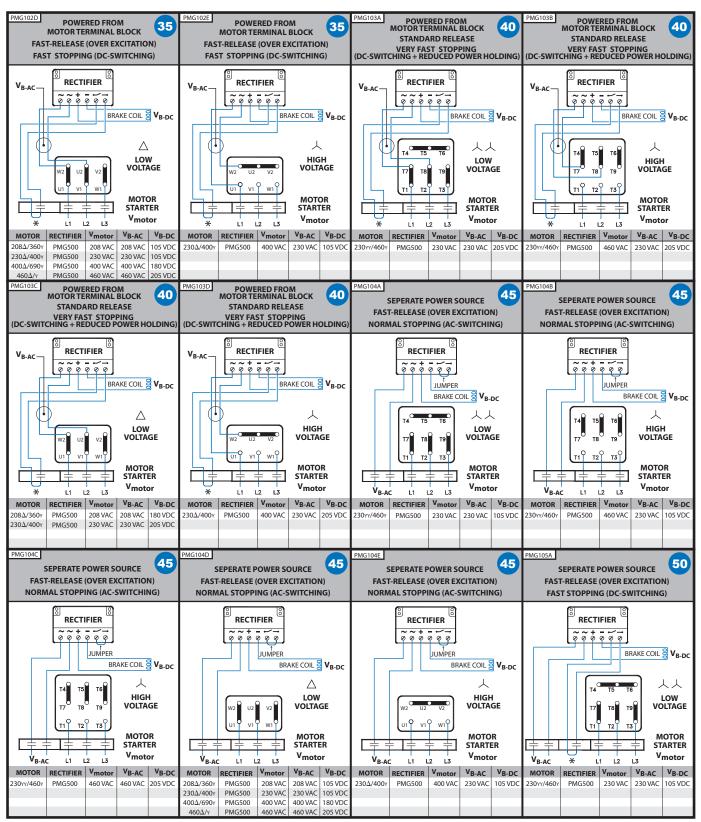
U35100 - 9 of 11

* The normally open contact/s (NO) is not supplied by NORD. It must close at the same time power is supplied to the brake. The contact must be capable of switching inductive loads and/or be rated IEC AC3.

NORD Gear Limited

01.31.17

Toll Free in Canada: 800.668.4378


www.nord.com/docs

- RETAIN FOR FUTURE USE

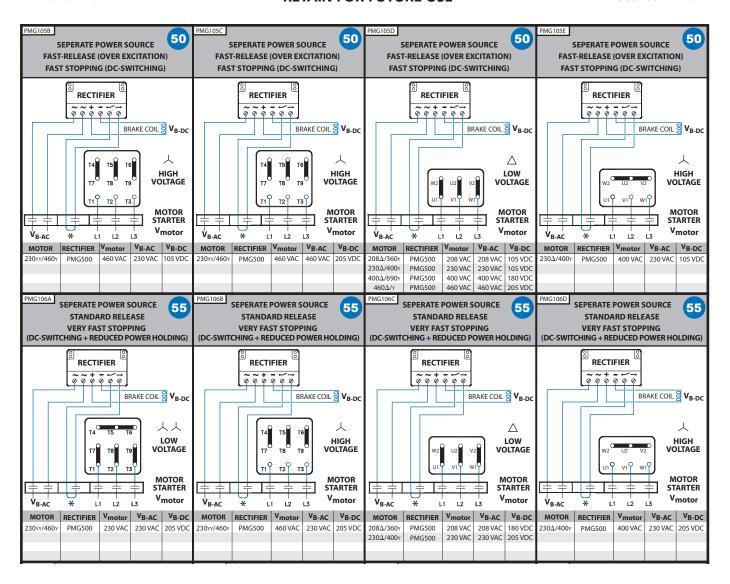
- U35100 - 10 of 11

* The normally open contact/s (NO) is not supplied by NORD. It must close at the same time power is supplied to the brake. The contact must be capable of switching inductive loads and/or be rated IEC AC3.

NORD Gear Limited

NORD Gear Corporation

Toll Free in Canada: 800.668.4378


Toll Free in the United States: 888.314.6673

- RETAIN FOR FUTURE USE

· U35100 - 11 of 11

^{*} The normally open contact/s (NO) is not supplied by NORD. It must close at the same time power is supplied to the brake. The contact must be capable of switching inductive loads and/or be rated IEC AC3.

Toll Free in Canada: 800.668.4378